【每日算法】LeetCode 98 —— 验证二叉搜索树(一百九十)

题目内容

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

1、节点的左子树只包含小于当前节点的数。
2、节点的右子树只包含大于当前节点的数。
3、所有左子树和右子树自身必须也是二叉搜索树。

示例

示例 1:

输入:
2
/ \
1 3
输出: true

示例 2:

输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。根节点的值为 5 ,但是其右子节点值为 4 。

题解

本题有两种思路,第一个思路就是按照定义判断,第二个思路就是对该二叉树进行中序遍历,然后判断输出是否有序即可。

在第一个思路中,需要求解左子树中的最大值和右子树中的最小值,然后与根节点进行比较,如果每次递归中,左子树的最大值均小于根节点小于右子树的最小值,则说明是一颗二叉搜索树。

在第二个思路中,如果中序遍历有序,那么一定可以推出其为一个二叉搜索树。在中序遍历中,一定是先输出左子树,然后输出根节点,然后再输出右子树,如果有序则一定说明左子树小于根节点小于右子树,因此一定是一颗二叉搜索树。

代码

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
if(!root) return true;//如果当前子树为空,返回true
return dfs(root)[0];//
}
vector<int> dfs(TreeNode* root){
//定义一个结果向量,存放状态,当前子树最小值,当前子树最大值
vector<int> res({1,root->val,root->val});
//如果存在左子树
if(root->left){
//判断左子树是否有问题
auto t = dfs(root->left);
//如果左子树有问题或者子树的最大值大于等于根节点的值
if(!t[0]||t[2]>=root->val)res[0] = 0;
res[1] = min(res[1],t[1]);//更新最小值
res[2] = max(res[2],t[2]);//更新最大值
}
//如果存在右子树
if(root->right){
auto t = dfs(root->right);
//如果右子树有问题或者右子树最小值大于等于根节点的值
if(!t[0] || t[1] <= root->val) res[0]=0;
res[1] = min(res[1],t[1]);//更新最小值
res[2] = max(res[2],t[2]);//更新最大值
}
return res;
}
};
Author: Frederic Niu
Link: https://www.fredericniu.cn/2021/07/12/【每日算法】LeetCode-98-——-验证二叉搜索树(一百九十)/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
我的公众号